Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain.

نویسندگان

  • Michael J Cooke
  • Yuanfei Wang
  • Cindi M Morshead
  • Molly S Shoichet
چکیده

One of the challenges in treating central nervous system (CNS) disorders with biomolecules is achieving local delivery while minimizing invasiveness. For the treatment of stroke, stimulation of endogenous neural stem/progenitor cells (NSPCs) by growth factors is a promising strategy for tissue regeneration. Epidermal growth factor (EGF) enhances proliferation of endogenous NSPCs in the subventricular zone (SVZ) when delivered directly to the ventricles of the brain; however, this strategy is highly invasive. We designed a biomaterials-based strategy to deliver molecules directly to the brain without tissue damage. EGF or poly(ethylene glycol)-modified EGF (PEG-EGF) was dispersed in a hyaluronan and methylcellulose (HAMC) hydrogel and placed epi-cortically on both uninjured and stroke-injured mouse brains. PEG-modification decreased the rate of EGF degradation by proteases, leading to a significant increase in protein accumulation at greater tissue depths than previously shown. Consequently, EGF and PEG-EGF increased NSPC proliferation in uninjured and stroke-injured brains; and in stroke-injured brains, PEG-EGF significantly increased NSPC stimulation. Our epi-cortical delivery system is a minimally-invasive method for local delivery to the brain, providing a new paradigm for local delivery to the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury.

Drug delivery to the brain is challenging because systemic delivery requires high doses to achieve diffusion across the blood-brain barrier and often results in systemic toxicity. Intracerebroventricular implantation of a minipump/catheter system provides local delivery, yet results in brain tissue damage and can be prone to infection. An alternate local delivery strategy, epi-cortical delivery...

متن کامل

Circumventing the blood-brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain.

Drug delivery to the central nervous system is limited by the blood-brain barrier, which can be circumvented by local delivery. In applications of stroke therapy, for example, stimulation of endogenous neural stem/progenitor cells (NSPCs) by cyclosporin A (CsA) is promising. However, current strategies rely on high systemic drug doses to achieve small amounts of CsA in the brain tissue, resulti...

متن کامل

Delivery of Epidermal Neural Crest Stem Cells (EPI-NCSC) to hippocamp in Alzheimer\'s Disease Rat Model

Background: Alzheimer’s disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Methods: Two weeks after induction of AD by injection of Amyloid-β 1-40 into CA1 area of ra...

متن کامل

Effect of Sambucus ebulus extract on neural stem cell prolifration under oxidative stress condition

Background and Aim: Recently, several studies have indicated that the central nervous system has the capacity for endogenous repair. But, the proliferation capacity of endogenous neural stem cells (NSCs) isn’t sufficient for the treatment of neurodegenerative diseases. So, it sounds that stimulation of endogenous NSC proliferation is essential for neuroregeneration. The aim of this study ...

متن کامل

Comparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat

Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 32 24  شماره 

صفحات  -

تاریخ انتشار 2011